Activity 1: Strategy Boxes

(Appropriate for AFTER the Broadcast Lesson)
Activity Goal: Explain a strategy to mentally solve a multiplication problem; during the game: draw lines on graph paper to create boxes; if a player draws the last line to close a box--that is theirs (put initial beside the box to indicate the player who closes the box).

Targeted Math Skills: Find multiple strategies for decomposing numbers and mentally solving them.

Materials: Multiplication expressions (attached), graph paper or blank paper to make dots on (sample board attached), 2 colored pencils, and a writing utensil (pencil).

Steps:

1. Take turns looking at a multiplication problem and solving it mentally.
2. One person describes a strategy. If the strategy makes sense to the other player, player 1 gets to draw a line. Repeat for player 2. Use the same problem until no new strategies are described.
3. Repeat for a new problem.
4. After 5 problems, see who has enclosed more boxes and that is the winner.

Questions to Consider:

1. How were you able to think about the numbers to solve?
2. Could there be a way to use 10 s to help make it easier?
3. Which strategy would you choose if you had to choose one?

Activity 2: Decomposing strategy preference
(Appropriate for AFTER the Broadcast Lesson)
Activity Goal: Explore different ways to decompose numbers and explain why one may be more effective than another.

Targeted Math Skills: Recognize the varied ways of decomposing numbers to make them more manageable.

Materials: Strategy cards (see below), and a writing utensil (pencil).

Steps:

1. Choose a strategy card and look at the strategies chosen to solve for the product.
2. Analyze the strategies and choose which one seems to be the most efficient and/or effective.
3. Explain your thoughts (orally) to a trusted adult or another person.

Questions to Consider:

1. What about this strategy is appealing to you?
2. Was there something about the other strategy that was unappealing?

Further Extension:

1. What is a strategy that you think someone would come up with?
2. Why do you think someone might prefer this strategy as opposed to the one you selected?

Additional Resources for Lesson-Related Extension Activities:

- Helpful Tips: Allow additional time for the student to think. Decomposing numbers and thinking about what makes sense to one person takes time.
- Student-Facing and/or Teacher-Facing:
- Video Tutorial: Composing \& Decomposing Numbers (Build Math Minds) https://www.youtube.com/watch?v=r7Wr8spVu28
- Supplemental Lesson/Resource (Build Math Minds -https://www.therecoveringtraditionalist.com/composing-and-decomposingnumbers/
- Teacher-Facing:
- Supplemental Resource/Video Tutorials/Practice Sets (Brown Bag Teacher) - https://brownbagteacher.com/number-talks-how-and-why/
- Supplemental Resource Video Tutorials \& Practice Sets (Inside Mathematics) - https://www.insidemathematics.org/classroom-videos/number-talks
- Supplemental Resource/Practice Sets (Peregian Spring - Queensland) https://peregianspringsss.eq.edu.au/Supportandresources/Formsanddocu ments/Documents/mental-strategies-for-multiplication-and-division.pdf
- Supplemental Video Tutorial - Number Talks (Henry County Mathematics)https://www.youtube.com/watch?v=X18cQkKMIhs

Lesson Title: Mental Multiplication Designer: Diane Hunter Discipline: Math Grade Level: \qquad

Activity 1 Materials

- Sample board:
- Multiplication expressions:

	\because P $\because 4$
	15×6

Lesson Title: Mental Multiplication Designer: Diane Hunter Discipline: Math Grade Level: _4-5 \qquad CONNECTION

Activity 2 Materials

- Strategy cards:

$\text { 2. } \begin{aligned} & (15+1) \times 5 \\ & 15 \times 5+5 \\ & 15 \times 2=30 \\ & 30+30+15=75 \\ & 75+5=80 \end{aligned}$	1. $\begin{gathered} (20+2) \times 4 \\ 20 \times 4=80 \\ 2 \times 4=8 \\ 80+8=88 \end{gathered}$ 2. $\begin{gathered} (11 \times 2) \times 4 \\ 11 \times(2 \times 4) \\ 11 \times 8 \\ 88 \end{gathered}$	$\begin{aligned} & \text { 1. }(15 \times 4)+(15 \times 4)+(2 \times 4) \\ & \text { 15x2=} 30 \\ & 15 \times 4=60 \\ & 60+60+(2 \times 4) \\ & 120+8 \\ & 128 \end{aligned}$ 2. $\begin{gathered} (30 \times 4)+(2 \times 4) \\ 30 \times 4=120 \\ 2 \times 4=8 \\ 120+8 \\ 128 \end{gathered}$
25×5	18×7	42×6
$\text { 1. } \begin{aligned} & (20 \times 5)+(5 \times 5) \\ & 100+(5 \times 5) \\ & 100+25 \\ & 125 \end{aligned}$	$\begin{aligned} \text { 1. } \quad(10 \times 7)+(8 \times 7) \\ 70+(8 \times 7) \\ 8 \times 8=64 \\ 64-8=56 \end{aligned}$	$\begin{aligned} & \text { 1. }(40 \times 6)+(2 \times 6) \\ & 240+(2 \times 6) \\ & 240+12 \end{aligned}$
	$\begin{aligned} & 70+56 \\ & 70+30=100 \end{aligned}$	
2. $(25 \times 4)+25$ $100+25$ *I thought of quarters and I know that 4 quarters is $\$ 1.00$	$100+26=126$ 2. $\begin{gathered} (9 \times 7)+(9 \times 7) \\ 63+63 \\ 60+60=120 \\ 120+3+3=126 \end{gathered}$	$\text { 2. } \begin{aligned} & (40 \times 5)+40+(2 \times 6) \\ & 200+40+(2 \times 6) \\ & 240+(2 \times 6) \\ & 240+12 \\ & 252 \end{aligned}$

